

Ignite

CERC Newsletter

 APRIL 2021

 Shrobona

 Founder

 Sujit Bhattacharya

Mentor

 Maya & Sreenidhi

 Editors

Message from the Founder of CERC

Dr. Shrobona Bhattacharya

Not every town has their own Science

Festival, Cambourne is lucky as it has its

own Science Festival since 2016.

Over the years the number of

participants increased, in 2020 Covid

time 160 young scientists presented

their scientific models and prototype

online when we decided to go on Zoom.

It went for two days for 12 hours and

children presented their works from 7

different time zones! We also renamed

the festival from Cambourne Science

festival to Cambridge Global Children

Science Festival.

We have a plan to run both these

festivals this year i.e., one to organise a

science festival where children can

present their prototypes and models at

Cambourne and another one for the

children from all over the world.

We not only encourage children for their

demonstration at their personal level

but also encourage them to act as an

young science ambassador where they

can motivate their classmates and friends to also take part in these festivals.

Message from the Mentor Dr. Sujit Bhattacharya
We are now coming to end of the Robotics and

Python batch that we started in Jan 2021. For the

Maths with Python, we had 24 students. For the

Robotics batch we had registration of 52 students for

Beginners, 30 students for Intermediate and 10

students for the advanced batch. All these students

are graduating this week and moving to the next level.

We have seen tremendous potential in these kids and

sure many of them will pursue a career in STEM. The

computational thinking is very critical for the 21st

century workforce in whatever profession they may

choose. We are very impressed with the commitment of the kids and parents.

The kids have now completed more than 30-projects along with us in the Robotics

Beginners course and they are now empowered to do several projects themselves. A

cohort of 52 students in age group of 7-15 years from Australia, US, India and UK had 10

weeks of mentoring in Science, Electronics and Robotics completing more than 40 projects

and presenting more than 60 Young Scientist demonstrations during the course.

The graduation cum certification ceremony is planned on Sunday, 11th April from 3.00pm

(London).

Please feel free to join the Zoom session:

Topic: Young Scientist Presentation & Certification

Time: Sunday, Apr 11, 2021 03:00 PM London

https://tinyurl.com/Young-Scientist-Presentation

Meeting ID: 870 7103 6674

Passcode: 513405

Please pass on the above link to all your friends, their classmates, teachers and

family members to join for the presentation to appreciate the projects by our young

budding scientists. This can go global.

We have planned several workshops on IoT, Artificial Intelligence and building a rover.

For more information on all the initiatives, please complete the form

https://tinyurl.com/cifstem-info

https://tinyurl.com/Young-Scientist-Presentation
https://tinyurl.com/cifstem-info

Message from Editorial board by Venkat Kommi

Hope everyone is enjoying Easter schools holidays and good

weather from Spring.

It is nice to see different topics for this edition of Ignite. We

are looking forward to seeing more response from the

readers.

Readers please feel free to comment on their articles. This

will boost their confidence levels.

The Ignite magazine is a community based volunteered

magazine, where a group of professionals, academics and

young children are working together.

These articles are written by the children and are edited by a

team.

The editorial team is in charge of the publication of the magazine.

If you have any questions, suggestions, or concerns, please address them

to ignite.camcare@gmail.com

Why do Atoms form chemical bonds?

by Vivek Kommi, 12 years, Perse School, Cambridge,UK

Atoms form chemical bonds to make their outer electron

shells more stable. The type of chemical bond maximizes

the stability of the atoms that form it, for example, when

a solid is formed the atoms are closer and therefore

makes the outer shell more stable whereas in a liquid, the

atoms are more spaced apart making the atoms have

less structure. An ionic bond, where one atom essentially

donates an electron to

another, forms when

one atom becomes

stable by losing its

outer electrons and the

other atoms become

stable (usually by filling its valence shell) by gaining the

electrons for example sodium and chloride donates an

electron around itself. Covalent bonds form when

sharing atoms results in the highest stability for example

water and diamonds. Other types of bonds besides ionic

and covalent chemical bonds exist, too.

The very first electron shell only holds two electrons. A hydrogen atom (atomic number 1)

has one proton and a lone electron, so it can readily share its

electron with the outer shell of another atom. A helium atom

(atomic number 2), has two protons and two electrons. The

two electrons complete its outer electron shell (the only

electron shell it has), plus the atom is electrically neutral this

way. This makes helium stable and unlikely to form a

chemical bond.

Most atoms need eight electrons to complete their outer

shell. So, an atom that has two outer electrons will often

form a chemical bond with an atom that lacks two electrons.

For example, a sodium atom has one lone electron in its outer shell. A chlorine atom, in

contrast, is short one electron to fill its outer shell. Sodium readily donates its outer

electron (forming the Na+ ion, since it then has one more proton than it has electrons),

while chlorine readily accepts a donated electron (making the Cl- ion, since chlorine is

stable when it has one more electron than it has protons). Sodium and chlorine form an

ionic bond with each other to form table salt (sodium chloride).

You can use the periodic table to make several predictions about whether atoms will form

bonds and what type of bonds they might form with each other. On the far right-hand side

of the periodic table is the group of elements called the noble gases Atoms of these

elements (e.g., helium, krypton, and neon) have full outer electron shells. These atoms are

stable and very rarely form bonds with other atoms.

One of the best ways to predict whether atoms will bond with each other and what type of

bonds they will form is to compare the electronegativity values of the atoms.

Electronegativity is a measure of the attraction an atom has to electrons in a chemical

bond.

A large difference between

electronegativity values between

atoms indicates one atom is

attracted to electrons, while the

other can accept electrons. These

atoms usually form ionic bonds with

each other. This type of bond forms

between a metal atom and a

nonmetal atom. If the

electronegativity values between

two atoms are comparable, they

may still form chemical bonds to

increase the stability of their valence

electron shell. These atoms usually

form covalent bonds. Electronegativity increases as you move from left to right across the

periodic table (except for the noble gases). It decreases as you move down a column or

group of the table. Atoms on the left-hand side of the table readily form ionic bonds with

atoms on the right side. Atoms in the middle of the table often form metallic or covalent

bonds with each other.

Google Foo Bar Challenge by Avni Balan, 13 years, IVC School, Histon,UK

Welcome back to Google Foobar Challenges. This is the second

out of a series, so if you’re new here, I’ll put a link to the first part of

the series at the end. So far in this story, we’ve successfully

automated a labour shift removal program to get Commander

Lambda to approve of us, so that we can later gain her trust, gain

access to the LAMBCHOP, destroy it and save Bunny Planet.

However, so far our efforts have gone unnoticed by Lambda, so

we’ve still got quite a bit of impressing left to do. We’ve been faced

with the task of repairing the ship’s solar panels, and writing a

program to figure out which panels to take offline to repair while

keeping the other panels in loop. Let’s see how well we did with this.

foobar #2: Power Hungry – Solution

We were tasked with removing certain elements – for example, 0s and negative numbers –

to get the maximum power output, or product, of an array. This is just fancy language for

removing numbers from a list so that when we multiply what’s left of it, we get the highest

possible number that you can get through multiplying any numbers from that array. I gave

you test cases that you should’ve tested your code against to see if it worked. Here’s a

picture of my code, since typing it out didn’t work last time:

How this code works is first it checks if there is only one element in the list given (if len(xs)

== 1:) and that if there is, just return that (return str(xs[0])). This happens because if it were

given a list of just one negative number, the largest product to return from that wouldn’t be

0, it would be just that number.

If that’s all false, it checks if there are any negative numbers in the list given (if any(i<0 for i

in xs):) If there are, it lists all the negative numbers and puts them in a list called negs (negs

= [i for i in xs if i < 0]) Then it checks if the number of negatives is even (if len(negs) % 2 !=

0:), since if it is even, there won’t be any need to remove any, since when you multiply an

even amount of negatives together, the answer will always be positive. But if it isn’t, then

the answer will be negative, which we don’t want. So if the amount is odd, it removes the

closest negative number to 0, or the largest number out of the group, from the list xs

(xs.remove(max(negs))), since that number will make the least difference to the product.

Then the code checks if there are any 0s in xs (if any(i==0 for i in xs):) and removes them (xs

= [i for i in xs if i != 0]).

Finally, after removal, it multiplies all the remaining elements with the number 1 and stores

it in a variable called ‘result’ (result = 1 / for i in xs: // result *= i). Then it checks if actually,

there’s nothing in xs, which I realise we could’ve done from the start, so we just return 0 (if

len(xs) == 0: // return ‘0’) and if that’s wrong, return the variable ‘result’ (else: // return

str(result)).

So that was my code – how did yours work? Here’s just a couple more cases to test it

against, called edge cases. These are worst-case scenarios, which while are rare, can be

very hard to deal with when they come along:

[-3]

Output: ‘-3’

[-4, -8]

Output: ‘32’

[0, -1, 0]

Output: ‘0’

Now with that all out of the way, here’s the next problem for you to have a go with if you

can:

foobar #3: Gearing Up to Destruction

As Commander Lambda’s personal assistant, you've been assigned the task of fixing some

of the LAMBCHOP doomsday device's gears in place. It should be simple - just add gears to

the pegs – some smaller, some bigger, depending on what you want the output to be. But

the problem is, due to the layout of the LAMBCHOP and the complicated system of beams

and pipes supporting it, the pegs that will support the gears are fixed in place. The

LAMBCHOP's engineers have given you lists of numbers identifying which position pegs

have been placed along various support beams. You need to place a gear on each peg

(otherwise the gears will collide with unoccupied pegs).

The engineers have plenty of gears in all different sizes stocked up, so you can choose

gears of any size, from a radius of 1 on up.

Your goal is to build a system where the last gear rotates at twice the rate (in revolutions

per minute, or rpm) of the first gear, no matter the direction. This means the radius of the

last gear has to be half the radius of the first gear. Each gear (except the last) must touch

the gear on the next peg to the right to turn it.

Your job is to find the radius of the first gear and to represent it as a fraction - in the format

[numerator, denominator] - in its simplest form. For example, if the radius is 1.5, represent

it as [3, 2] from the fraction 3/2, or if you get 2/4, instead return [1, 2] from the fraction 1/2.

However, for some orders of pegs it may be impossible to find correctly sized gears, s

when it comes to that, return [-1, -1]. For example, for the list [4, 30, 50] your function

should return the list [12, 1], since the second gear will have a radius of 14 and the last a

radius of 6, which is half of 12. Try your code against these cases:

[4, 30, 50]

Output: [12, 1]

[4, 17, 50]

Output: [-1, -1]

[4, 8, 9, 11]

Output: [10, 3]

You can look things up if you need help, but don’t look up the solution code without

learning anything.

My Github and Gmail accounts:

avni.k.balan@gmail.com

https://github.com/not-that-python

Link to Feb IGNITE Issue / first part of the series:

https://www.flipsnack.com/camcare/cerc-ignite-feb.html

My name is Avni. I’m 12 years old and I really like to code. I’m mainly Python-based, but I

also use p5.js. It’s really fun to look into computing logic and the kinds of problems you can

solve. I’m also interested in law and a little bit of politics. Someday, I’d like to somehow

participate in court and look a little further into magistrate or high court, as well as brush

up my debating skills.

mailto:avni.k.balan@gmail.com
https://github.com/not-that-python
https://www.flipsnack.com/camcare/cerc-ignite-feb.html

The Sun by Sairam Batchu, 13 years, Perse School, Cambridge, UK

The Sun is the largest mass, within the solar system, and

accounts for 98.86 percent of all mass comprising the

Solar System. The Sun is what is known as main

sequence star, a mass that mainly contains hydrogen

and helium. It is a sphere, which fuses hydrogen in such

a way that it releases a vast amount of energy, which

allows the star from collapsing in on itself. The way that

the Sun is in perfect harmony, meaning that it is a stable

star, is because the Sun can fuse elements at a rate that

it is able to counter the forces of gravity, while also fusing

elements that allow the Sun to radiate heat and light.

Since the Sun is described as a main-sequence star,

there are certain conditions that the Sun must meet to

be under the category of a main sequence star, the first

of which being that

the Sun’s mass must

fall within 1.4 * 10^29 kg and 3.0*10^32 kg. This range

dictates, in certain conditions, how a star can behave. This

is usually also known as the range of mass between 75

times the mass of Jupiter and no more than 150 times the

wight of the Sun itself. By knowing the information of the

category of which the sun falls in (according to mass)

scientists can predict the life cycle of a star, like the fact

that the Sun, at the end of its life, will not explode into a

supernova, but rapidly expand into another phase of

its life being a red giant.

To be classified as a main-sequence star, the mass must have nuclear fusion occurring,

which is the fusion of elements to keep the mass stable. The way that a star reaches the

end of its life is when the star fuses elements that do not give enough energy to keep the

balance between gravity and expansion. After a certain period of the Sun’s life, the Sun

fuses elements heavier than hydrogen and helium, and since they are heavier, they do not

output as much energy when being fused. After the Sun runs out of fuel to sustain the

balance, which is about 4 billion years from now, the Sun will expand into a red

giant, since the core of the star is contracting because of gravity, but the outer layers like

the corona are still expanding due to hydrogen fusion within those layers. The sun gets

larger, redder, and extremely bright as it cools. When the sun expands into the red-giant

phase, the goldilocks zone that had allowed the Earth to sustain life, the balance of heat,

will be destroyed as it expands to engulf mercury and place Venus in and orbital trajectory

that ensures that it will crash into the Sun.

The fate of the Earth is that the intense heat will kill all life and solar flares and extreme

solar winds shall ruin the magnetic field, that protects us from solar winds, and the lack of

a magnetic field means that the atmosphere shall vanish.

 At first, Earth will transform into the condition of Venus and after the destruction of the

atmosphere, it will evolve into an extremely volcanically active version of Mars, without the

inclusion of any liquid water or ice. After the sun evolves into a red giant, the outer layers

of the Sun will float away, since the forces acting on the Sun’s mass are not strong. When

the Sun is in the Red giant phase, Jupiter and Saturn will fall into the goldilocks' zone and

life may be sustained on its moons. Then, it will transition into a red supergiant and the

chances of life existing in this solar system at this rate will be extremely low. After that, all

the outer layers of the sun will float away as mass that will then form another planetary

nebulae and the sun’s core will remain as a white dwarf, which can barely exert enough

gravitational pull to hold in the rocky planets.

The Sun’s diameter is roughly 870,000 miles, meaning about 110 Earths could line up and

touch the edges of the Sun. In terms of sheer volume, 1.4 million Earths could fit inside the

Sun, when effectively organised. Since the Sun will transform into a red giant in about 130

million years, the sun will stop burning hydrogen and engulf the Earth, just before it

transitions into becoming mass for planetary nebulae. The Sun is almost a perfect sphere,

with only a 10 km difference between its polar and equatorial diameters, the closest object

to a sphere observed in nature. The white dwarf that the sun’s core will eventually be left

as will be roughly the size of the Earth now. The Sun’s core temperature reaches about 15

million degrees. The reason that the Sun generates solar winds is because at the corona, or

the outermost layer of the Sun, sheds away hydrogen in burst, which hurtle through

the solar system at a speed which hits and breaks through the magnetic fields of the Earth

and generates the Aurora Borealis, or the Northern Lights. The sun if often referred to as a

GV star, or a star that is a yellow dwarf. It is close to impossible to live on the sun since it

reaches about 4000 degrees Celsius on the surface. It would take 1,430,769 hours to drive

there at 65 miles per hour. It would take 59,615 days to drive there at 65 miles per hour.

Google Foo Bar Challenge by Aaron Balan, 11 years, Histon,UK

In the February magazine, I wrote an article about my first problem in the

foobar challenge. This month, I will write about how I completed my second

challenge. I will then end this article with my third challenge that you can

ponder on and maybe solve. I will reveal my solution to this one in the next

issue and give you another problem to work on and we will continue like this

in the following issues. Hope you enjoy my articles and solving the problems

in the coming months.

Do any of you remember the problem I gave you a while ago? Well done if you do! And

fantastic if you solved it! For anyone who doesn’t remember it, I recommend going to the

link above. Here is the way I solved it, but it is probably going to need a little explaining:
def fib(n):
 if n == 0 or n == 1:
 return 1
 return fib(n-1) + fib(n-2)
def solution(total_lambs):
 max_lst = []
 min_lst = []
 i = 0
 while sum(max_lst) >= total_lambs:
 max_lst.append(2**i)
 i += 1
 i = 0
 while sum(min_lst) >= total_lambs:
 min_lst.append(fib(i))
 i += 1
 return len(min_lst) - len(max_lst)

Here, the first function I write isn’t actually the solution, but a different function. This

function returns the nth number in the Fibonacci sequence. Next, I define the actual

function that produces the answer to the problem. Now, the way I solved this could be

considered to be cheating by some people, because it doesn’t follow the logic of the

problem, and is only solved through a simple emergent behaviour: rule 2 and 3 of the 4 key

rules of this problem makes the maximum amounts of the LAMBs that Commander

Lambda can give are a list of the powers of 2, and the least she can give are a list of the

Fibonacci sequence. So most of this code is just getting the Fibonacci numbers and the

powers of 2. The last line returns what the question is looking for, which is the difference

between the number of henchmen she can pay, while paying the maximum amount and

the minimum amount.

I had completed the first challenge of this level, but it wasn’t over yet! I still had one more

challenge until I could move to level 3. Hope you have fun maybe attempting this problem,

and here it is:

https://www.flipsnack.com/camcare/cerc-ignite-feb.html
https://www.flipsnack.com/camcare/cerc-ignite-feb.html
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Fibonacci_number

In order to destroy Commander Lambda's LAMBCHOP doomsday device, you'll need access to it. But the only

door leading to the LAMBCHOP chamber is secured with a unique lock system whose number of passcodes

changes daily. Commander Lambda gets a report every day that includes the locks' access codes, but only

she knows how to figure out which of several lists contains the access codes. You need to find a way to

determine which list contains the access codes once you're ready to go in.

Fortunately, now that you're Commander Lambda's personal assistant, she's confided to you that she made

all the access codes "lucky triples" in order to help her better find them in the lists. A "lucky

triple" is a tuple (x, y, z) where x divides y and y divides z, such as (1, 2, 4). With that

information, you can figure out which list contains the number of access codes that matches the number

of locks on the door when you're ready to go in (for example, if there's 5 passcodes, you'd need to

find a list with 5 "lucky triple" access codes).

Write a function solution(l) that takes a list of positive integers l and counts the number of "lucky

triples" of (li, lj, lk) where the list indices meet the requirement i < j < k. The length of l is

between 2 and 2000 inclusive. The elements of l are between 1 and 999999 inclusive. The answer fits

within a signed 32-bit integer. Some of the lists are purposely generated without any access codes to

throw off spies, so if no triples are found, return 0.

For example, [1, 2, 3, 4, 5, 6] has the triples: [1, 2, 4], [1, 2, 6], [1, 3, 6], making the answer 3

total.

Have a good think about it and I will see you soon! :)

My name is Aaron and I’m 11 years old. I really like coding in Python and JavaScript (mainly p5.js for

JavaScript) and I am really passionate about maths, my favorite subjects being calculus with derivatives and

integrals, and linear algebra with vectors and matrices. I must thank Sujit and the CERC team for showing me

how to combine complex maths and complex coding together to create wonderfully cool projects.

Stars and Nebula by Leo Fell, 9 years, Cambourne, UK

As well as learning about rockets and space travel, I have been

learning about how the stars appear to rotate around Polaris (The

North Star), because Earth is spinning. Earth rotates all the way

around in one day and at 15 degrees per hour. The North Star is

pointing to the North Pole instead of straight up.

The first picture shows that because the earth rotates, the stars

move as we look at them. This picture is two hours of the stars

rotating in the middle of the night whilst I was fast asleep. The

North Star is the one in the middle. It is still a dot because it is

lined up with the Earth’s rotation axis.

The second picture taken looking to the South-West. You can see the stars going East (on

the left) to West (on the right) and you can see the star trails are tilted at an angle because

Earth is on its tilted axis as it rotates around the sun.

Earth’s tilt is about 23 degrees as you can also see in the picture below.

In the night sky, the star

patterns all have names. The

Orion star constellation is

circled in red. You can see

Orion’s belt which are the

three stars in the middle.

Below them is Orion’s sword

and you can just see Orions

Nebula in the middle. The

star at the top left is called

Betelgeuse. Betelgeuse is a

red supergiant star about 950

times the size of our sun and

the 10th brightest star in the

sky. It is burning fast and on

its way to turning into a

supernova when it burns out

in a few million years.

In the green circle is Mars.

This picture was taken just

after NASAs Perseverance rover had landed on the surface.

This a picture of Orion’s nebula

(seen in Orion’s sword in the

previous picture) taken through

a telescope. Because it is so far

away this is what it looked like

1344 years ago, even though

the picture was taken the other

day. Even then, it is still the

closest nebula to Earth in our

galaxy.

A nebula is a made up of gasses

and dust and it is where new

stars are born.

Article from the Young Scientists for the Next

Issue:

Ignite Team is looking for young scientists to write an article for the

next issue of the magazine. Please submit the article by Sunday,

2nd May 2021 by emailing the article at ignite.camcare@gmail.com

and with a subject “Article for Ignite”.

Please use the following template for writing the article:

https://bit.ly/3nF820h

Volunteers Needed:

Ignite Team is looking young volunteers with knowledge of

Editing/Presentation Skills, HTML, Web Authoring tools.

Volunteering certification can also be provided for the Duke of Edinburgh Skill

enhancement.

mailto:ignite.camcare@gmail.com
https://bit.ly/3nF820h

